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REVIEWER COMMENTS</B> 

Reviewer #1 (Remarks to the Author): 

This paper by Luo and Ke presents a new approach to sequence-based m6A site prediction and analysis 

with helpful comparisons between species and to sites identified using various sequencing approaches. 

However, as noted in the introduction, other m6A site predictors have been developed. At this point, 

the locations of m6A have been well-characterized (or at least often characterized) in both human and 

mouse transcriptomes. Of note this year, Körtel et al. (2021) developed an updated protocol for miCLIP 

and used this data in combination with a machine learning approach (also with an AUC of 0.99) to 

identify m6A sites in four human and mouse cell lines. It is unclear how iM6A compares, and biological 

insights from sequence modifications seem to primarily capture the known importance of RRACH motifs. 

Major questions/comments: 

1. Do negative training sites centre on adenosine residues and RAC or RRACH motifs? 

2. If using 5000 nucleotides on either side of pre-mRNA as training input, how are sites encoded that 

don’t have 5000 bases on both sides? Is this information used by the model and could it bias the models 

towards the prediction of m6A sites in the last exon? 

3. Körtel et al. claim that their method of filtering training data for positive and negative sites offers 

improvements over standard m6A-CLIP/miCLIP analysis methods. Does using their sites to train iM6A 

change predictions (i.e. how sensitive is the method to differences in training data)? 

4. Based on their miCLIP2 data, Körtel et al. predict many non-DRACH motif sites as methylated. What 

percentage of these are captured by the iM6A model? Does iM6A predict any non-RAC motifs as 

methylated? 

5. Fig 1d: in comparison to MAZTER-seq and other methods, rather than considering the rank of sites, 

what percent of sites experimentally detected as methylated were predicted to be methylated by iM6A? 

Can you show a scatter plot of rank vs. probability for these sites (and a distribution of probabilities for 

tested sites overall)? How do probabilities from iM6A compare to methylation rates per site quantified 

using MAZTER-seq? 

6. Fig 2: Figure 2h suggests that the top enhancer motifs frequently encompass the methylated residue. 

As RRACH motifs are already widely recognized to be important for methylation, how does excluding 

sites directly surrounding the methylated adenosine change the “enhancer” and “silencer” sets? 

If RRACH motifs are still among the top enhancers, would this be because they are themselves 

methylated? Or could this be an artifact of multiple m6A sites in close proximity increasing peak 

enrichment in miCLIP data without necessarily affecting one another’s methylation rates? 

7. (Lines 345-346) Do the SNVs discussed as putative factors in disease through changes in m6A lead to 

synonymous mutations? Can effects from changes at the epitranscriptomic level be separated from 

sequence changes at the protein level? In this section of the text in general, do any of the SNVs detected 

lead to synonymous mutations? 

8. In Fig 3f/h & 4e/g, examples focus on direct changes to the RRACH motif encompassing methylated 

sites. It is not surprising that these would affect methylation rates. 

The same is true in Figure 6, focusing on stop codons. Again, stop codons seem to be important mainly 



as part of RRACH motifs or their direct extensions, with differences falling off within 3 nucleotides of 

methylated sites (Figure 6a). Do conclusions regarding stop codon associations with m6A represent 

anything beyond the likelihood of various stop codons to be included in or to disrupt favourable RRACH 

motifs? 

(Lines 427 & 430): it seems particularly obvious that a change in the stop codon at position 2 that 

changes A to G would abrogate m6A methylation at that A (there is no longer an adenosine to be 

methylated), while a change from G to A would have the opposite effect. 

9. Regarding Figure 7, could errors when applying cross-species model reveal anything about species-

specific m6A deposition preferences? 

10. If it is true that sequence changes downstream of m6A sites have a greater effect on m6A probability 

than sequence changes upstream, any predictions as to mechanism? 

11. Given that many previously published m6A site predictors also claim high accuracy, could the same 

biological insights have been generated based on these tools rather than iM6A? What is the overlap in 

sites predicted using these different methods? 

12. m6A methylation rates are reported to differ across cell lines (e.g. Liu et al., 2013 SCARLET paper). 

Does accuracy decrease if iM6A is trained on data from one cell line and tested on data from another? 

Minor comments: 

- Table S2: Is the p-value really exactly 0 for all pentamers? 

- Ext Fig 3: a lot of text in the legend is repeated for each subfigure and could be condensed. 

Reviewer #2 (Remarks to the Author): 

The manuscript presented a deep learning model for m6A site prediction and interpretation. In general, 

the manuscript is well written, the experiments were well designed with multiple different technical 

considerations. 

The modeling of m6A sites using whole Pre-mRNA is indeed novel and can potentially bring major 

improvement in performance. Many experiments were designed to show the performance of the 

predictor and great efforts were made to interpret the model and its biological meaning. I did see great 

efforts of the authors and truly appreciate that. 

Nevertheless, I have the following comments. 

1. Truly sorry for being skeptical. The reported performance (AUROC=0.99) seems too good to be true 

based on existing literature [1]. This is due to the highly imbalanced dataset, with a lot more negative 

sites than positive sites. AUROC is known to be strongly affected by data imbalance. It is better to 

calculate the AUPRC, which is not effected by sample imbalance, and also report the AUROC on 

balanced data (with the same number positive and negative sites or samples). Ideally, the same number 

of negative and positive sites should be extracted from the same transcript as in most existing works for 

RNA modification site prediction. 



2. “pre-mRNA” has been used to describe the input sequence. Do you also consider lncRNA? Can the 

negative sites be from intronic regions, which are often easier to recognize and leads to higher reported 

performance? 

3. Figure 1b is not accurate. WHISTLE achieved good performance because it also takes advantages of 

genomic features. If you use only SVM and sequence information, then it is just MethyRNA method. 

4. Authors showed a potential function of im6A to identify the m6A associated SNVs (Figure 4). There 

have already been quite a few works in this field, which should probably be mentioned, including at 

least [2, 3]. 

5. Please provide more details related to the encoding of m6A sites. In the METHOD section. Authors 

described that ‘The training input of iM6A for each gene is the full length of the pre-mRNA sequence 

with 5000 nucleotides on each side. This means the input are not of the same dimension for different 

genes. How do you deal with super long transcripts (100 thousands nt)? Do you consider pre-mRNA 

only, or you also considered pre-lncRNA. How do you label the m6A sites in the encoded information (it 

should be part of the input, and not clear to me based on Figure 1a or Figure 6b)? 

6. Please provide your training and testing data as well, so that people can fully replicate the reported 

performance. (Apologize for being skeptical. But I am sure that you don’t want to find out later that the 

high performance is due to unfair setting or a mistake.) 

7. If the cis-elements regulating the m6A deposition preferentially reside within the 50 nt downstream 

of the m6A sites, why the input sequence of your model is so long (at least 10kb)? Most existing method 

uses only 1kb sequences. Could you test the performance of your method with shorter sequences on 

both sides? 

8. Sorry for my ignorance. How do you define “m6A enhancers” and “m6A silencers”? This is the first 

time I saw these two terms. 

Reference 

1. Chen, Z., et al., Comprehensive review and assessment of computational methods for predicting RNA 

post-transcriptional modification sites from RNA sequences. Brief Bioinform, 2020. 21(5): p. 1676-1696. 

2. Luo, X., et al., RMVar: an updated database of functional variants involved in RNA modifications. 

Nucleic Acids Res, 2021. 49(D1): p. D1405-D1412. 

3. Chen, K., et al., RMDisease: a database of genetic variants that affect RNA modifications, with 

implications for epitranscriptome pathogenesis. Nucleic Acids Res, 2021. 49(D1): p. D1396-D1404. 

Reviewer #3 (Remarks to the Author): 

In this manuscript, Luo and Ke develop a robust deep learning method to identify sites of m6A 

methylation. Using this method, the authors model cis-regulatory sequences that may influence m6A 

deposition. They find that such cis-regulatory elements are mostly present in the 50 nucleotides 

downstream of the m6A site. Further, the authors find that synonymous mutations can affect m6A 

modification and the TGA stop codon favors m6A deposition. These models are supported by genetic 

variation and evolutionary conservation. 



Overall, this is a VERY strong manuscript that begins to tackle key questions in the m6A field. In my 

opinion, one of the biggest unknowns in this field is why some m6A motifs get modified and others 

don’t. The data presented here offer intriguing insights into how this happens. However, more analyses 

are required to strengthen the manuscript and corroborate key points made. 

Major points: 

1. The finding that the main enhancer sequences downstream of of m6A sites are other m6A motifs is 

very intriguing and conceptually makes sense! However: 

a. How often are miCLIP/m6A-CLIP sites found within 50 nt of each other? This should be discussed 

further. Is there a correlation between peak height in m6A-seq/MeRIP-seq and number of RRACH 

motifs? 

b. Given that m6A enhancers mostly include parts of the m6A motif itself, it stands to reason that these 

motifs may also be modified. Are these adjacent enchancer motifs also called as high confidence m6A 

sites by the iM6A? The authors should describe this as a separate figure panel. 

c. How does the last m6A motif in such a cluster of m6A motifs compare to the first in terms of its 

modification probability as called by the model? 

d. An alternative/complementary hypothesis is that these m6A motifs serve to recruit and retain the 

MTC within the relevant region for modification. Can data from existing MTC PAR-CLIP/iCLIP/CLIP-seq 

datasets be used to infer whether such regions with higher concentrations of m6A motifs interact more 

with the MTC? 

2. The use of existing datasets which couple m6A-profiled primary cells from 60 donors, as well as using 

existing genetic variation to test the veracity of iM6A-derived enhancer and silencer motifs in the 

regions adjacent to m6A sites is innovative and convincing. However, these data can be bolstered by 

molecular biology data that proves the point further. The authors should generate reporters with 

different cis-elements downstream of m6A motifs and test the methylation of the target sites by a 

method such as SCARLET or MazF-qPCR? 

3. A major open question in the m6A field is whether and if so, how, m6A modification is altered by 

stimulation. Would the cis-elements identified to affect m6A deposition change under the context of 

cellular stress or perturbation. The authors should perform similar analyses as presented in the initial 

figures using existing miCLIP/m6A-CLIP datasets that also include a perturbation condition. At least one 

such dataset is that generated by Meyer et al (PMID: 26593424). Alternative analyses that explore the 

concept of stimulation changing (or not) m6A cis-regulatory elements will also be fine! 

4. The analysis that swaps human and mouse models to demonstrate a shared m6A code through 

evolution is fantastic. But how far back does this go? Several miCLIP datasets now exist for Drosophila 



(PMID: 28675155, 33674589). Perhaps the authors can train iM6A for Drosophila and test whether the 

shared m6A code exists in invertebrates as well. 

Minor points: 

1. The presented example of rs760539449 A->G in the SOX10 gene also disrupts an m6A motif directly. 

Was this m6A motif called as being methylated by iM6A? 

2. The Zenodo link cited in the end where the data is deposited is not yet easily available and requires 

extra permissions than merely signing up. 
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Reviewer #1 (Remarks to the Author): 

This paper by Luo and Ke presents a new approach to sequence-based m6A site prediction 

and analysis with helpful comparisons between species and to sites identified using various 

sequencing approaches. However, as noted in the introduction, other m6A site predictors 

have been developed. At this point, the locations of m6A have been well-characterized (or at 

least often characterized) in both human and mouse transcriptomes. Of note this year, Körtel 

et al. (2021) developed an updated protocol for miCLIP and used this data in combination 

with a machine learning approach (also with an AUC of 0.99) to identify m6A sites in four 

human and mouse cell lines. It is unclear how iM6A compares, and biological insights from 

sequence modifications seem to primarily capture the known importance of RRACH motifs. 

We appreciate Reviewer #1’s valuable comments for improving our manuscript. We have 

carefully revised the manuscript accordingly. Below is our point-to-point response. The 

reviewer’s comments are in blue, our responses are in black. 

Körtel et al. (2021) developed a machine learning approach (m6Aboost) to identify m6A 

sites. It’s noteworthy that this is a tool to identify m6A CLIP sites from m6A peaks (i.e. 

identifying the m6A-CLIP sites from the antibody non-specific binding sites), not a predictor to 

predict m6A sites in whole transcriptome using primary sequence alone. 

Although several machine-learning or deep-learning methods have been developed to 

predict m6A sites, how m6A deposition achieves site-specificity is unknown. Our iM6A work is 

the first paper to reveal that this site-specificity is determined by primary nucleotide sequence, 

and the cis-elements within 50nt downstream region regulate m6A deposition. 

 

1. Do negative training sites center on adenosine residues and RAC or RRACH motifs? 

Thanks for the question of training dataset, the negative training sites were not centered on A 

residues of RAC or RRACH motif. As we described in the methods part of model training and 

testing, we used the pre-mRNA sequence as input. For the nucleotides in a transcript, the 

m6A sites were served as positive sites, while all other nucleotides (non-m6A A, G, T and C) 

were used as negative sites, and the probability score for each nucleotide being a m6A site 

was calculated.  
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2. If using 5000 nucleotides on either side of pre-mRNA as training input, how are sites 

encoded that don’t have 5000 bases on both sides? Is this information used by the model 

and could it bias the models towards the prediction of m6A sites in the last exon? 

Thanks for the question. As we described in the Methods (“The training input of iM6A for each 

gene is the full length of the pre-mRNA sequence with 5000 nucleotides on each side”), it 

means that the input sequence covers the region from 5kb upstream of TSS (transcription 

start site) to 5kb downstream of TES (transcription end site) for each gene. This strategy 

guaranteed that each nucleotide in pre-mRNA has at least 5000 nucleotides on both sides. 

Our model did not show any bias towards the prediction of m6A sites in last exon. The m6A 

sites in any position of pre-mRNA can be predicted. As we described in the manuscript, the 

same cis-element rule governs m6A deposition in both last exon and long internal exon (Fig. 

2g). 

 

3. Körtel et al. claim that their method of filtering training data for positive and negative sites 

offers improvements over standard m6A-CLIP/miCLIP analysis methods. Does using their 

sites to train iM6A change predictions (i.e. how sensitive is the method to differences in 

training data)? 

Thanks for the suggestion. As Revewer#1 mentioned, the m6Aboost in Körtel et al (2021) is a 

method to identify m6A CLIP sites from m6A peaks and it’s not a predictor to predict m6A sites 

based on primary nucleotide sequence. We also tested the sites generated by miCLIP2, and 

iM6A could precisely predict the identified experimental sites. Thanks to Reviewer #1’s 

suggestion, we now include this experimental data as an additional experimental validation to 

our iM6A modeling. (Extended Data Fig. 1h, i, k) 

 

4. Based on their miCLIP2 data, Körtel et al. predict many non-DRACH motif sites as 

methylated. What percentage of these are captured by the iM6A model? Does iM6A predict 

any non-RAC motifs as methylated? 

Thanks for the suggestion. It’s known that the m6A site consensus is RRACH or RAC in the 

mRNAs of mouse and human (PMID: 26404942). In the data of miCLIP2, only 217 non-RAC 

motif sites were identified as very rare events (< 2% of total CLIP sites). As we described in 
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the manuscript, we trained iM6A with m6A sites in RAC motifs as positive sites. Non-RAC 

motifs could not be predicted as being methylated because of their extremely low probability. 

 

5. Fig 1d: in comparison to MAZTER-seq and other methods, rather than considering the rank 

of sites, what percent of sites experimentally detected as methylated were predicted to be 

methylated by iM6A? Can you show a scatter plot of rank vs. probability for these sites (and 

a distribution of probabilities for tested sites overall)? How do probabilities from iM6A 

compare to methylation rates per site quantified using MAZTER-seq? 

Thanks for the suggestion. We have showed the modeled probability by iM6A agreed with the 

m6A methylation level quantified by either m6A-seq or MAZTER-seq (Extended Data Fig1m, 

n and o). Even though the modeled probability has a strong correlation with the methylation 

level, iM6A is a method to predict the probability of a site being a m6A site, not to predict the 

methylation level of a site. To address Reviewer#1’s question, the scatter plot of modeled 

probability versus cleavage efficiency changes by MAZTER-seq was showed and a strong 

correlation could be observed between the two values (Response Figure 1A). 

 

Response Figure 1. (A) Scatter plot of modeled probability versus cleavage efficiency 

changes by MAZTER-seq for m6A sites. The R value was calculated by Pearson Correlation 

Coefficient. 

 

6. Fig 2: Figure 2h suggests that the top enhancer motifs frequently encompass the 

methylated residue. As RRACH motifs are already widely recognized to be important for 

methylation, how does excluding sites directly surrounding the methylated adenosine 
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change the “enhancer” and “silencer” sets? If RRACH motifs are still among the top 

enhancers, would this be because they are themselves methylated? Or could this be an 

artifact of multiple m6A sites in close proximity increasing peak enrichment in miCLIP data 

without necessarily affecting one another’s methylation rates? 

First, the motif analysis in our manuscript did exclude sites directly surrounding the 

methylated adenosine, we have described the details in the Methods (“For each position in 

the downstream region of a m6A site (i.e. from position 3 to position 46), the nucleotide was 

substituted by each of three other nucleotides. The resulted probability change (ΔProbability) 

of this m6A site is calculated by iM6A.”). Second, whether enhancer motifs being methylated 

is a very interesting question, and Reviewer #3 asked a related question. We plotted the 

distribution of RAC sites flanking the m6A sites. The RAC sites adjacent to m6A sites have a 

higher frequency to be m6A sites (Response Figure 3C), indicating it’s more likely to be 

methylated. The RAC sites adjacent to non-m6A sites have lower frequency to be m6A sites 

(Response Figure 3D), indicating it’s unlikely to be methylated. Moreover, both methylated 

and non-methylated RAC sites are enriched in the downstream 50 nt region of m6A site 

(Response Figure 3C), indicating both could enhance m6A deposition. Thanks to 

Reviewer#1 and #3’s suggestion, we now include these two panels as Extended Data Fig. 

2m,n in manuscript, and the text was modified accordingly. 

 

7. (Lines 345-346) Do the SNVs discussed as putative factors in disease through changes in 

m6A lead to synonymous mutations? Can effects from changes at the epitranscriptomic 

level be separated from sequence changes at the protein level? In this section of the text 

in general, do any of the SNVs detected lead to synonymous mutations? 

Thanks for the suggestion. To focus on the effect of SNVs on RNA not protein level, we 

identified out the SNVs that only cause synonymous mutations. Many of these SNVs could 

affect m6A deposition, either enhancing or dampening (Response Figure 1B), and the events 

that could change the m6A probability (|ΔProbability| >= 0.1) were also highly enriched in the 

region 50 nt downstream of the m6A sites (Response Figure 1C), agreeing with the finding in 

Fig. 2 and Fig. 4b,c. Altogether, iM6A could annotate the synonymous SNVs that can affect 

m6A deposition. We have added this figure as Extended Data Fig. 4 in the manuscript. 
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Response Figure 1. (B) Scatter plot of predicted probability for m6A sites with major allele 

(ProbREF) or minor allele (ProbALT), all SNVs are synonymous mutations. Red color dots 

were mutational events that increased m6A probability (ΔProbability>=0.1); Green color dots 

are mutational events that decreased m6A probability (ΔProbability <= -0.1). (C) Positional 

plot of ΔProbability (cutoff = 0.1) for m6A sites with major allele or minor allele, all SNVs are 

synonymous mutations. Red color dots were mutational events that increased m6A 

probability; Green color dots were mutational events that decreased m6A probability.  

 

8. In Fig 3f/h & 4e/g, examples focus on direct changes to the RRACH motif encompassing 

methylated sites. It is not surprising that these would affect methylation rates. The same is 

true in Figure 6, focusing on stop codons. Again, stop codons seem to be important mainly 

as part of RRACH motifs or their direct extensions, with differences falling off within 3 

nucleotides of methylated sites (Figure 6a). Do conclusions regarding stop codon 

associations with m6A represent anything beyond the likelihood of various stop codons to 

be included in or to disrupt favorable RRACH motifs? (Lines 427 & 430): it seems 

particularly obvious that a change in the stop codon at position 2 that changes A to G would 

abrogate m6A methylation at that A (there is no longer an adenosine to be methylated), 

while a change from G to A would have the opposite effect. 

Thanks for the advice. While Fig 3f/h & 4e/g were positive controls for iM6A prediction 

accuracy, Figure 3g/i & 4f/h showed how the downstream SNVs affect m6A deposition.  

For the m6A site adjacent to stop codon, the m6A motif of sites at position -2 (i.e. NRACTRR. 

NRACN is the motif of m6A and TRR is the stop codon) was not affected by stop codon swap 

(Fig 6a, 6b). The TGA stop codon is still in favor of m6A deposition. 
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9.  Regarding Figure 7, could errors when applying cross-species model reveal anything 

about species-specific m6A deposition preferences? 

Thanks for the suggestion. According to the data of this manuscript, the human and mouse 

have the similar rules governing m6A deposition. Same as the question 4 of Review #3, we 

are also interested in how m6A deposition is determined in different species across 

vertebrates and invertebrates. However, the training of iM6A needs a large number of high-

quality experimentally determined m6A sites as positive sites. The currently published sites of 

different species could not satisfy the requirement, and we plan to investigate this question in 

the future when these data become available. 

 

10. If it is true that sequence changes downstream of m6A sites have a greater effect on m6A 

probability than sequence changes upstream, any predictions as to mechanism?  

This is a very interesting question, and Reviewer #3 asked a related question. We analyzed 

the ChIP-seq data of METTL3 (PMID: 28581511, PMID: 32778823), and found METTL3 is 

enriched in the downstream region of m6A sites (Response Figure 3F, 3G). We 

hypothesized that the methyltransferase complex (MTC) might play a role in this mechanism. 

The precise mechanism is still yet to be established and needs a lot of focused research 

investigations as one of the future directions. 

 

11. Given that many previously published m6A site predictors also claim high accuracy, could 

the same biological insights have been generated based on these tools rather than iM6A? 

What is the overlap in sites predicted using these different methods? 

As we showed in Fig 1b, the performance of iM6A is much better than any of the predictors 

published previously. High accuracy is the foundation of biological discovery. Based on iM6A 

modeling, we could understand the cis-element mechanism for m6A site-specificity.  

 

12. m6A methylation rates are reported to differ across cell lines (e.g. Liu et al., 2013 SCARLET 

paper). Does accuracy decrease if iM6A is trained on data from one cell line and tested on 

data from another? 
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This is a very interesting point. While the methylation rates of a m6A site may be different 

across cell lines, the iM6A is a deep learning model to predict the probability of a site being a 

m6A site but not a tool to predict the methylation level, though the probability modeled by 

iM6A has a strong correlation with the methylation level. At the same time, a high-throughput 

method for quantifying genome-wide m6A site methylation rate is yet to be developed for 

different cell lines. We hope to further develop deep learning models for this methylation rate 

modeling once the related technology becomes available in the future. 

 

Minor comments: 

- Table S2: Is the p-value really exactly 0 for all pentamers? 

The p-value is less than 2.2250738585072014E-308, and python cannot show the value less 

than 2.2250738585072014E-308. Moreover, the minimum value of Excel is 2.00E-308.  

Accordingly, we modified the p-value as less than 5.00E-308 in Table S2.  

 

- Ext Fig 3: a lot of text in the legend is repeated for each subfigure and could be condensed. 

Thanks for the advice, we have modified the figure legends in the manuscript. 

 

Reviewer #2 

The manuscript presented a deep learning model for m6A site prediction and interpretation. In 

general, the manuscript is well written, the experiments were well designed with multiple 

different technical considerations.  

The modeling of m6A sites using whole Pre-mRNA is indeed novel and can potentially bring 

major improvement in performance. Many experiments were designed to show the 

performance of the predictor and great efforts were made to interpret the model and its 

biological meaning. I did see great efforts of the authors and truly appreciate that. 

We appreciate Reviewer#2’s high recognition of our work and valuable comments. We 

have carefully revised the manuscript according to the comments which improved our 

manuscript. Below is our point-to-point response. The reviewer’s comments are in blue, our 

responses are in black. 
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1. Truly sorry for being skeptical. The reported performance (AUROC=0.99) seems too good 

to be true based on existing literature [1]. This is due to the highly imbalanced dataset, with 

a lot more negative sites than positive sites. AUROC is known to be strongly affected by 

data imbalance. It is better to calculate the AUPRC, which is not effected by sample 

imbalance, and also report the AUROC on balanced data (with the same number positive 

and negative sites or samples). Ideally, the same number of negative and positive sites 

should be extracted from the same transcript as in most existing works for RNA modification 

site prediction. 

As Review #2 described, many existing publications (e.g. PMID: 31714956) for m6A sites 

prediction are based on the sequence flanking the target sites (m6A or non-m6A sites), and a 

1:1 ratio of positive-to-negative sites were extracted from the same transcript. 

Since m6A is deposited to nascent pre-mRNA (PMID: 28637692), we modeled how m6A 

deposition is determined by pre-mRNA primary sequence through the iM6A deep learning 

modeling. As we described in the methods part of the model training and testing, we used the 

pre-mRNA sequence as input. For the nucleotides in a transcript, the m6A sites were served 

as positive sites, while all other nucleotides (non-m6A A, G, T and C) were used as negative 

sites, and the probability score for each nucleotide being a m6A site was calculated. It’s a 

remarkable fact that the negative sites contribute useful primary sequence information same 

as the positive sites, and both positive and negative sites contribute to the modeling 

performance. It is an important advantage of the iM6A deep learning modeling that it can 

intake huge amount of information including both positive and negative sites.  

To address reviewer’s question, we calculated the AUPRC for the independent testing 

dataset, which was showed in Supplementary Table1 and AUPRC=0.45. To assess the 

performance of iM6A’s prediction for the RRACH sites on chromosome 9 (the independent 

testing dataset), we calculated the AUPRC value which showed iM6A had much better 

performance than SVM or CNN-RNN model (Extended Data Fig1b, 1c). Thus, in summary, 

both AUROC and AUPRC values showed that iM6A has much better m6A deposition 

modeling than the existing methods. Thanks to Reviewer #2’s comments, we now include all 

these new figures into our manuscript. 
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2. “pre-mRNA” has been used to describe the input sequence. Do you also consider lncRNA? 

Can the negative sites be from intronic regions, which are often easier to recognize and 

leads to higher reported performance? 

We only used the protein-coding genes in this study, while the long non-coding RNAs 

(lncRNA) are not included. Although some lncRNAs such as Malat1 have m6A sites in their 

transcripts, most of m6A sites are enriched in mRNAs (PMID: 26404942, PMID: 28637692). 

The input sequence covers the transcripts from 5kb upstream of TSS (transcription start 

site) to 5kb downstream of TES (transcription end site). The intronic regions are also included 

in this study, which are part of the transcript structure and essential for modeling m6A 

deposition on pre-mRNA. 

For the performance of m6A-centered models, the full transcript model (i.e. with intron) 

could achieve better performance than mature mRNA model (PMID: 30993345). By excluding 

the RRACH sites in intronic region, we calculated the performance of iM6A’s prediction for the 

RRACH sites only in the exonic regions, and the AUROC is 0.921 (Response Figure 2A), 

which also achieved state-of-the-art performance in comparison to the existing methods. 

 
Response Figure 2A. Receiver operator curves (ROCs) and the corresponding area under 

receiver operator curves (AUROC) scores for iM6A, CNN-RNN, and SVM. Here the RRACH 

sites in the exonic region of mouse chromosome 9 were used to test the models.  

 

3. Figure 1b is not accurate. WHISTLE achieved good performance because it also takes 

advantages of genomic features. If you use only SVM and sequence information, then it is 

just MethyRNA method. 
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Thanks for pointing out this mistake in the manuscript, we only used the sequence 

information in the SVM model. We’ve modified the text accordingly. “Receiver operator curves 

(ROCs) and corresponding area under receiver operator curves (AUROC) scores of iM6A, 

CNN-RNN (implemented in TDm6A), and SVM (implemented in MethyRNA).” 

 

4. Authors showed a potential function of im6A to identify the m6A associated SNVs (Figure 

4). There have already been quite a few works in this field, which should probably be 

mentioned, including at least [2, 3]. 

Thanks for the suggestion. In our manuscript, we assessed how the SNVs could affect 

m6A deposition by iM6A. The existing publications include RMvar and RMDisease that 

collected the SNVs being potentially involved in m6A modification. iM6A can systematically 

predict how m6A deposition could be influenced by the SNVs and could provide synergistic 

contribution to the scientific community in addition to RMvar and RMDisease. We have 

discussed and cited these publications in our manuscript, and the text was also modified 

accordingly. “Defining the disease-associated mutations among millions of SNVs is a grand 

challenge. The databases like RMvar, RMDisease collected the genetic variants which might 

be associated with m6A modification, while iM6A could provide synergistic contribution to 

decipher the cis-element mechanisms and could provide a new perspective in understanding 

the diseases caused by RNA modifications.” 

 

5. Please provide more details related to the encoding of m6A sites. In the METHOD section. 

Authors described that ‘The training input of iM6A for each gene is the full length of the pre-

mRNA sequence with 5000 nucleotides on each side. This means the input are not of the 

same dimension for different genes. How do you deal with super long transcripts (100 

thousands nt)? Do you consider pre-mRNA only, or you also considered pre-lncRNA. How 

do you label the m6A sites in the encoded information (it should be part of the input, and 

not clear to me based on Figure 1a or Figure 6b)? 

As we described in the METHOD (“The training input of iM6A for each gene is the full 

length of the pre-mRNA sequence with 5000 nucleotides on each side”), it means the input 

sequence covers the region from 5kb upstream of TSS to 5kb downstream of TES for each 
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gene. The sequence was transformed by One-hot-Encoding. Then, the one-hot encoded 

nucleotide sequence was split into blocks of length 5000+5000+5000 in such a way that the ith 

block consisted of the nucleotide sequence position from 5000(i-1)-5000+1 to 5000i+5000. 

Similarly, the output label was also split into blocks of length 5000 in such a way that ith block 

consists of the positions from 5000(i-1) +1 to 5000i. This strategy was also adopted by 

SpliceAI (PMID: 30661751) to model pre-RNA splicing. We have modified the text of model 

architecture in Methods accordingly. 

In this study, we only focused on pre-mRNA, as we answered in the response to 

Question 2. 

 

6. Please provide your training and testing data as well, so that people can fully replicate the 

reported performance. (Apologize for being skeptical. But I am sure that you don’t want to 

find out later that the high performance is due to unfair setting or a mistake.) 

Thanks for the suggestion, we’ve uploaded the datasets to Github (https://github.com/ke-

laboratory/iM6A). The whole dataset was divided into training and testing datasets. The 

training dataset contained all the transcripts on most chromosomes except chromosome 9 

(chr9), the transcripts of which were held out and reserved for the testing. We documented 

this detail in the Methods section of model training and testing. 

 

7. If the cis-elements regulating the m6A deposition preferentially reside within the 50 nt 

downstream of the m6A sites, why the input sequence of your model is so long (at least 

10kb)? Most existing method uses only 1kb sequences. Could you test the performance of 

your method with shorter sequences on both sides? 

Even though this study showed the cis-elements regulating m6A deposition largely reside 

within the 50nt downstream of the m6A sites, other sequence features could also affect m6A 

deposition as long-range regulations, which are interesting future directions that we are 

working on. 

We were also interested in the performance of iM6A with shorter sequences on both 

sides. We trained the iM6A model with 80, 400, 2K, and 10K sequence on both sides, and the 

performance increased along with sequence length. (Response Figure 2B). 
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Response Figure 2B. Receiver operator curves (ROCs) and corresponding area under 

receiver operator curves (AUROC) scores of iM6A with different sequence length. Here 

mouse chromosome 9 data was used to test the iM6A, which were trained independently on 

data of other mouse chromosomes except chromosome 9. 

 

8. Sorry for my ignorance. How do you define “m6A enhancers” and “m6A silencers”? This is 

the first time I saw these two terms. 

The pentamers that could enhance m6A deposition are designated as m6A enhancers, while 

the pentamers that could dampen m6A deposition are designated as m6A silencers. The same 

terms have been used to study regulatory cis-elements of pre-mRNA splicing (e.g. PMID: 

21659425). 

 

 

 

 

Reviewer #3: 

In this manuscript, Luo and Ke develop a robust deep learning method to identify sites of m6A 

methylation. Using this method, the authors model cis-regulatory sequences that may 

influence m6A deposition. They find that such cis-regulatory elements are mostly present in 

the 50 nucleotides downstream of the m6A site. Further, the authors find that synonymous 

mutations can affect m6A modification and the TGA stop codon favors m6A deposition. These 

models are supported by genetic variation and evolutionary conservation. 
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Overall, this is a VERY strong manuscript that begins to tackle key questions in the m6A field. 

In my opinion, one of the biggest unknowns in this field is why some m6A motifs get modified 

and others don’t. The data presented here offer intriguing insights into how this happens. 

However, more analyses are required to strengthen the manuscript and corroborate key 

points made. 

We highly appreciated Reviewer #3’s recognition of our work. We modeled m6A 

deposition by deep learning and found the cis-elements determine its site-specificity. 

Moreover, Reviewer #3’s valuable comments improved our manuscript. We have carefully 

revised the manuscript according to the comments. Below is our point-to-point response. The 

reviewer’s comments are in blue, our responses are in black. 

 

Major points: 

1. The finding that the main enhancer sequences downstream of of m6A sites are other m6A 

motifs is very intriguing and conceptually makes sense! However: 

a. How often are miCLIP/m6A-CLIP sites found within 50 nt of each other? This should be 

discussed further. Is there a correlation between peak height in m6A-seq/MeRIP-seq and 

number of RRACH motifs?  

This is a very interesting point. We clustered the miCLIP/m6A-CLIP sites within 50 nt of each 

other. ~17000 sites are single individual sites, while over 34000 sites could be grouped as 

clusters (Response Figure 3A). We also measured the correlation between the peak 

enrichment score and its number of RAC motifs of each peak in m6A-seq/MeRIP-seq, and we 

did see some correlation (R=0.18, P < 2.2E-16) (Response Figure 3B). 
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Response Figure 3. (A) Count of miCLIP/m6A-CLIP sites (in RAC motifs) in clusters. The 

miCLIP/m6A-CLIP sites were clustered into clusters (within 50 nt). Single means the cluster 

has only one site, while multiple means the cluster has at least two sites. (B) Scatter plot was 

between the peak enrichment score and the number of RAC sites of each peak, and each dot 

was a m6A peak identified by m6A-CLIP (PMID: 26404942). The peak enrichment score was 

calculated as the average of the peak enrichment scores (10nt interval) in a m6A peak. The R 

value was calculated by Pearson Correlation Coefficient. 

 

b. Given that m6A enhancers mostly include parts of the m6A motif itself, it stands to reason 

that these motifs may also be modified. Are these adjacent enchancer motifs also called as 

high confidence m6A sites by the iM6A? The authors should describe this as a separate 

figure panel. 

The crosstalk of m6A sites in cluster is a very interesting point. We plotted the distribution of 

RAC sites flanking the m6A sites. The RAC sites adjacent to m6A sites have a higher 

frequency to be m6A sites (Response Figure 3C), indicating it’s more likely to be methylated. 

The RAC sites adjacent to non-m6A sites have lower frequency to be m6A sites (Response 

Figure 3D), indicating it’s unlikely to be methylated. Moreover, both methylated and non-

methylated RAC sites are enriched in the downstream 50 nt region of m6A sites (Response 

Figure 3C), indicating both could enhance m6A deposition. Thanks to Reviewer #3’s 

suggestion, we now include these two panels as Extended Data Fig. 2m,n in manuscript, 

and the text was modified accordingly. 

 

 
Response Figure 3. (C) Positional plot for the frequency of RAC sites in the sequences 

around the m6A sites. The plots were compared between the m6A RAC sites (red color, higher 
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m6A probability, probability >= 0.05) and the non-m6A RAC sites (control, green color, lower 

m6A probability, probability < 0.05). Data were presented as mean ± S.E.M. (standard error of 

the mean). (D) Positional plot for the frequency of RAC sites in the sequences around the 

non-m6A sites. The plots were compared between the m6A RAC sites (red color, higher m6A 

probability, probability >= 0.05) and the non-m6A RAC sites (control, green color, lower m6A 

probability, probability < 0.05) of RAC sites. Data were presented as mean ± S.E.M. (standard 

error of the mean) 

 

c. How does the last m6A motif in such a cluster of m6A motifs compare to the first in terms of 

its modification probability as called by the model? 

This is a very interesting question. We identified the m6A sites as RAC sites with high 

probability value (Probability>=0.05), then clustered these sites within 50nt of each other. 

Scatter plot showed little bias of its modification probability between the first m6A site and the 

last m6A site in a cluster (Response Figure 3E). 

 

 

Response Figure 3. (E) Scatter plot of probability value between the first and the last m6A 

sites in a cluster, each dot was a m6A site cluster. 

 

d. An alternative/complementary hypothesis is that these m6A motifs serve to recruit and 

retain the MTC within the relevant region for modification. Can data from existing MTC PAR-

CLIP/iCLIP/CLIP-seq datasets be used to infer whether such regions with higher 

concentrations of m6A motifs interact more with the MTC? 



 16 

This is a very interesting question, and Reviewer #1 asked a related question. Though there 

is no good quality METTL3-CLIP data publicly available, we analyzed the ChIP-seq data of 

METTL3 (PMID: 28581511, PMID: 32778823), and found METTL3 is likely to be enriched in 

the downstream region of m6A sites (Response Figure 3F, 3G). We hypothesized that the 

methyltransferase complex (MTC) may play the role in this mechanism. The precise 

mechanism is yet to be established, and we are working on this question as one of the future 

directions.  

 

Response Figure 3. (F-G) The mouse (F) or human (G) METLL3 ChIP-seq peak density in 

last exons were compared between m6A sites and non-m6A sites. The peak density was 

calculated as the number of METTL3 peak regions per 10-nt interval, and the raw ChIP-seq 

data is from PMID: 28581511 & PMID: 32778823. 

 

2. The use of existing datasets which couple m6A-profiled primary cells from 60 donors, as 

well as using existing genetic variation to test the veracity of iM6A-derived enhancer and 

silencer motifs in the regions adjacent to m6A sites is innovative and convincing. However, 

these data can be bolstered by molecular biology data that proves the point further. The 

authors should generate reporters with different cis-elements downstream of m6A motifs and 

test the methylation of the target sites by a method such as SCARLET or MazF-qPCR? 

We appreciate Reviewer#3’s comments that our work using existing genetic variation to test 

iM6A-derived enhancer and silencer motifs as being innovative and convincing. We also 

agree with Reviewer#3’s suggestion that molecular biology data could further prove the point. 

We do have plans in this direction combining individual reporters with high-throughput ones to 

systematically test the cis-element rules of m6A deposition, however, this project would 

constitute more appropriately as a separate paper for its scope and the time/efforts to be 
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devoted, particularly considering that our current iM6A work is already a full-size article of 

seven main figures (each with many panels) plus many supplemental figure panels. Here we 

really hope to have Reviewer#3’s support to let us publish the iM6A work as it is right now 

with no more delay. The sooner we publish this iM6A work, the sooner we could share our 

important finding with the scientific community. We appreciate a lot this support, and thank 

you. 

 

3. A major open question in the m6A field is whether and if so, how, m6A modification is 

altered by stimulation. Would the cis-elements identified to affect m6A deposition change 

under the context of cellular stress or perturbation. The authors should perform similar 

analyses as presented in the initial figures using existing miCLIP/m6A-CLIP datasets that also 

include a perturbation condition. At least one such dataset is that generated by Meyer et al 

(PMID: 26593424). Alternative analyses that explore the concept of stimulation changing (or 

not) m6A cis-regulatory elements will also be fine! 

Thanks for the suggestion. It’s a very interesting topic how m6A deposition is altered by 

stimulation. The dataset generated by Meyer et al (PMID: 26593424) did not have the m6A 

sites with single nucleotide resolution under heat shock, thus we could not train deep learning 

model. We are definitely very interested in pursuing this direction as future projects once the 

related data set becomes available. 

 

4. The analysis that swaps human and mouse models to demonstrate a shared m6A code 

through evolution is fantastic. But how far back does this go? Several miCLIP datasets now 

exist for Drosophila (PMID: 28675155, 33674589). Perhaps the authors can train iM6A for 

Drosophila and test whether the shared m6A code exists in invertebrates as well. 

Thanks for the suggestion. Same as the question 9 of Review #1, we are also interested in 

how m6A deposition is determined in different species beyond human and mouse. However, 

the training of iM6A needs a large number of high-quality experimentally determined m6A 

sites as positive sites. The two published m6A miCLIP sites in Drosophila (PMID: 28675155, 

33674589) could not meet this requirement (personal communication with Dr. Eric C. Lai and 
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his team). We would need to work on this direction as future projects through a potential 

collaboration with Dr. Eric C. Lai Lab. 

 

Minor points: 

1. The presented example of rs760539449 A->G in the SOX10 gene also disrupts an m6A 

motif directly. Was this m6A motif called as being methylated by iM6A? 

Yes, the probability value of this site is 0.56. It’s a m6A site called by iM6A. 

 

2. The Zenodo link cited in the end where the data is deposited is not yet easily available and 

requires extra permissions than merely signing up. 

We are truly sorry for the inconvenience of accessing the data. We have updated the Zenodo 

link (https://zenodo.org/record/4734266), and now it is fully accessible. 

 



REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

Thank you to the authors for their responses and additional analyses. I have a few questions about the 

model and conclusions remaining. 

1. It seems like both Reviewer 2 (Question 5) and I had the similar questions regarding the upstream and 

downstream +/- 5000 bases included in the model. The confusion seems to stem from the authors’ 

phrasing regarding the use of pre-mRNA sequences. If I understand correctly now, the authors in fact 

also consider the genomic sequence that surrounds the pre-mRNA +/- 5000 bases. This should be 

clarified and specifically noted in the methods. But this clarification also begs the follow-up questions: 

what biological contribution, if any, could the intergenic sequence surrounding a transcript have on m6A 

deposition? If none, what is that data contributing to the model? 

Can the authors also please elaborate on the statement in their response that “Our model did not show 

any bias towards the prediction of m6A sites in last exon”? As they note in the text (e.g. lines 59-61), it 

would be expected based on previous literature that m6A would be enriched in the 3’ UTR and last 

exon. A metagene plot showing enrichment of predicted methylation over normalized lengths of 5’ UTR, 

CDS, 3’ UTR would clarify whether the distribution predicted by the model is as expected. In theory, 

though, if this enrichment does exist in the last exon, differences in sequence composition between pre-

mRNA and the following intergenic region could contribute to predictions. That would bias the model 

towards prediction of m6A in the last exon using information beyond that contained in the pre-mRNA 

sequence theoretically available to a methyltransferase complex (this comes back to the question above 

regarding the biological justification for inclusion of intergenic sequences in the model). One way of 

checking for this bias would be to compare accuracy rates for internal sites, where no intergenic 

sequence was included in the model, and distal sites within 5000 bp of the TES, where the intergenic 

sequence could contribute to predictions. 

The claims of the authors focus on regulatory elements within 50 bp of methylation sites, and later 

analyses specifically select for “m6A sites which located at least 50 nt away from both last exon start and 

last exon end” (lines 846-847). The comparison between sites in the last exon and in “long internal 

exons” (although how these long exons are defined needs to be described in the methods section) in 

Figure 2 also supports a role for regulatory pentamers independent of location in a gene. I therefore 

wouldn’t expect contributions from intergenic sequences to invalidate the main conclusions of the 

paper, but they could help explain why training with extensive sequences substantially increases the 

accuracy of this model compared to 80 nt windows, as shown in Response Figure 2B (an important 

figure that should be added to the supplementary information). 

2. To rephrase part my question regarding the stop codon analysis, are the motif preferences 

demonstrated a property of stop codons, or simply of their motifs (is TGA generally associated with m6A 

in surrounding RRACH motifs, or only TGA that codes for stop codons)? If the authors check the same 



three trimers in locations that don’t surround the stop codon for association with m6A, do the same 

trends hold? This wouldn’t change that a particular stop codon may be more associated with m6A than 

another, however, a general motif preference could help explain why. 

3. Regarding SNVs: “We further categorized the SNVs” (line 356): do “the SNVs” refer to SNVs that cause 

synonymous mutations, described in the previous sentence, or to a larger group of SNVs again? 

Could the authors please clarify whether the SNVs they focus on in Figure 4e-h are synonymous or not? 

The claim that, for instance, “The two SNVs above could affect the m6A modification in the DARS2 

transcript as a novel disease cause” (lines 370-371) may not be the most likely hypothesis if those SNVs 

also alter protein sequence. 

The association between changes in m6A deposition and increased pathogenicity in general seems 

questionable. To better show the association, rather than showing a jitter plot in Figure 4a (where the 

distributions are difficult to see among overlapping points) and the barplot in Figure 4d (that binarizes 

sites into m6A changed or not changed based on an arbitrary threshold), could the authors should a 

histogram or density plot to show the distribution of m6A probability changes for the three categories of 

SNV? These distributions do not appear different in Figure 4a, but the claims surrounding Figure 4d 

would suggest that they are. 

Reviewer #2 (Remarks to the Author): 

Glad to confirm that all my comments have been properly addressed. I am happy to recommend the 

acceptance of this manuscript at NC. 

Reviewer #3 (Remarks to the Author): 

This reviewer's concerns have been satisfied. I agree that several points raised by reviewers would 

benefit from detailed analyses in future publications. As such, the manuscript in its current form is a 

strong and important piece of work and will greatly contribute to our understanding of the details 

underlying m6A modification. 



Reviewer #1 (Remarks to the Author): 

 

Thank you to the authors for their responses and additional analyses. I have a few questions 

about the model and conclusions remaining. 

 

We appreciate the valuable comments from the reviewer to improve the manuscript. Below is 

our point-to-point response. The reviewer’s comments are in blue, our responses are in black. 

 

1. It seems like both Reviewer 2 (Question 5) and I had the similar questions regarding the 

upstream and downstream +/- 5000 bases included in the model. The confusion seems to stem 

from the authors’ phrasing regarding the use of pre-mRNA sequences. If I understand correctly 

now, the authors in fact also consider the genomic sequence that surrounds the pre-mRNA +/- 

5000 bases. This should be clarified and specifically noted in the methods. But this clarification 

also begs the follow-up questions: what biological contribution, if any, could the intergenic 

sequence surrounding a transcript have on m6A deposition? If none, what is that data 

contributing to the model?  

We apologize for the misunderstanding of the input sequence. We have modified it in the 

methods. (The training input of iM6A for each gene is the full length of the pre-mRNA sequence 

with 5000 nucleotides on each side, covering the transcript from 5kb upstream of TSS 

(transcription start site) to 5kb downstream of TES (transcription end site).) It is known that 

transcriptional initiation and termination could regulate pre-mRNA processing event such as 

pre-mRNA splicing and poly-adenylation (PMID: 24514444 and PMID: 27677860). As m6A 

mRNA modification is deposited to pre-mRNA during transcription (PMID: 28637692), it could 

be true that transcriptional initiation and termination may also regulate m6A deposition along 

with other pre-RNA processing events, thus providing the biological rational to include the 5000 

bases flanking the pre-mRNA. We are interested in the biological role of regulatory regions like 

promoter and transcript termination in m6A deposition, and would like to work on it as one of 

the future directions. 

 

Can the authors also please elaborate on the statement in their response that “Our model did 



not show any bias towards the prediction of m6A sites in last exon”? As they note in the text 

(e.g. lines 59-61), it would be expected based on previous literature that m6A would be enriched 

in the 3’ UTR and last exon. A metagene plot showing enrichment of predicted methylation over 

normalized lengths of 5’ UTR, CDS, 3’ UTR would clarify whether the distribution predicted by 

the model is as expected. In theory, though, if this enrichment does exist in the last exon, 

differences in sequence composition between pre-mRNA and the following intergenic region 

could contribute to predictions. That would bias the model towards prediction of m6A in the last 

exon using information beyond that contained in the pre-mRNA sequence theoretically 

available to a methyltransferase complex (this comes back to the question above regarding the 

biological justification for inclusion of intergenic sequences in the model). One way of checking 

for this bias would be to compare accuracy rates for internal sites, where no intergenic 

sequence was included in the model, and distal sites within 5000 bp of the TES, where the 

intergenic sequence could contribute to predictions. 

 

Our original sentence that “our model did not show any bias towards the prediction of m6A sites 

in last exon” was intended to say that iM6A could accurately predict the m6A sites in both last 

exon and internal exons without technical bias issue. Here we prefer to use “enrichment” 

instead of “bias” to describe the enrichment of m6A sites in last exons as to avoid such a 

confusion. The top 100K m6A sites were used for the metagene plot, and indeed enriched in 

the 3’-UTR as expected (Response Figure 1A). 

 

We also calculated the accuracies for both internal sites (distance to TSS (transcription start 

site) and TES (transcription end site) is over 5000 nt) and distal sites (within 5000 nt of TSS or 

TES), and iM6A can accurately predict both internal and distal sites (both AUROCs > 0.95 

Response Figure 1B, C). The full details of iM6A modeling in internal and distal sites and their 

associated biological mechanism of transcriptional initiation and termination on regulating m6A 

deposition are interesting research directions that we hope to work on as separate projects in 

the future. 

 



 

Response Figure 1. (A) Metagene plot of top 100K m6A sites (in RRACH motifs). (B-C) 

Receiver operator curves (ROCs) and the corresponding area under receiver operator curves 

(AUROC) scores for internal sites and distal sites. The sites which located over 5000 nt from 

both TSS and TES were defined as internal sites, while the sites within 5000 nt of TSS or TES 

were defined as distal sites. Here the RRACH sites in mouse chromosome 9 were used to test 

the models. 

 

The claims of the authors focus on regulatory elements within 50 bp of methylation sites, and 

later analyses specifically select for “m6A sites which located at least 50 nt away from both last 

exon start and last exon end” (lines 846-847). The comparison between sites in the last exon 

and in “long internal exons” (although how these long exons are defined needs to be described 

in the methods section) in Figure 2 also supports a role for regulatory pentamers independent 

of location in a gene. I therefore wouldn’t expect contributions from intergenic sequences to 

invalidate the main conclusions of the paper, but they could help explain why training with 

extensive sequences substantially increases the accuracy of this model compared to 80 nt 

windows, as shown in Response Figure 2B (an important figure that should be added to the 

supplementary information). 

 

Thank you to the reviewer’s suggestion to clarify long internal exon definition. The length of 

long internal exons for motif analysis were 100 nt at least. We have added the details in the 

methods section. Moreover, we thank the reviewer for the suggestion to include the original 

panel of Response Figure 2B from the 1st revision to the supplementary figures. Now we add it 

as Extended Data Fig. 1q and modify the text in the manuscript accordingly. 

 



2. To rephrase part my question regarding the stop codon analysis, are the motif preferences 

demonstrated a property of stop codons, or simply of their motifs (is TGA generally associated 

with m6A in surrounding RRACH motifs, or only TGA that codes for stop codons)? If the authors 

check the same three trimers in locations that don’t surround the stop codon for association 

with m6A, do the same trends hold? This wouldn’t change that a particular stop codon may be 

more associated with m6A than another, however, a general motif preference could help explain 

why. 

 

We appreciate the insights from the reviewer that TGA trimer may be in favor of m6A deposition 

beyond the stop codon itself. To test the hypothesis, we counted the number of TGA, TAA, and 

TAG trimers in m6A enhancer motifs. The TGA trimer is consistently enriched comparing to TAA 

or TAG, supporting the hypothesis that TGA trimer promotes m6A deposition. (Response Table 

1, the same conclusion regardless of top50, top100, and top150 m6A enhancer motifs). 

Accordingly, we included Response Table 1 to the manuscript as Supplemental Table 4. and 

added one sentence at the Stop codon section of the manuscript: Moreover, the TGA as a 

trimer motif may promote m6A deposition in comparison to TAA and TAG trimers (Supplemental 

Table 4).  
 

Top50 Top100 Top150 
TGA 5 13 21 
TAA 0 3 13 
TAG 0 0 0 

Response Table 1. Number of motifs containing TGA, TAA, TAG in m6A enhancer motifs. 

 

3. Regarding SNVs: “We further categorized the SNVs” (line 356): do “the SNVs” refer to SNVs 

that cause synonymous mutations, described in the previous sentence, or to a larger group of 

SNVs again? 

Our apology for the writing ambiguity. “the SNVs” described in line 356 belongs to the larger 

group of SNVs, not the SNVs that cause synonymous mutation. We have modified the text 

accordingly. 

 

Could the authors please clarify whether the SNVs they focus on in Figure 4e-h are 



synonymous or not? The claim that, for instance, “The two SNVs above could affect the m6A 

modification in the DARS2 transcript as a novel disease cause” (lines 370-371) may not be the 

most likely hypothesis if those SNVs also alter protein sequence. 

 

We apologize for this confusion. The Figure 4e-h did not focus on synonymous mutations, and 

all of the SNVs showed in these four panels cause missense mutation. Figure 4e-h were used 

as individual examples to show that iM6A could help to annotate the effect of pathogenic SNVs 

on m6A deposition beyond protein coding sequence mutations. In ClinVar database, the 

missense and nonsense SNVs are more likely to be annotated as pathogenic for their 

convenience in inferring protein functional disruption. In other words, the pathogenic SNVs that 

are documented currently in ClinVar primarily focus on protein sequence disruption. Our iM6A 

annotation provides an alternative angle to interpret these disease-causing SNVs from the m6A 

RNA modification perspective. As the m6A disease research grows mature in the future, the 

ClinVar database could include pathological SNVs that were affected by m6A deposition alone 

and our iM6A work could promote the disease research discovery in this direction. Accordingly, 

we have modified our manuscript text to make it clear. 

 

The association between changes in m6A deposition and increased pathogenicity in general 

seems questionable. To better show the association, rather than showing a jitter plot in Figure 

4a (where the distributions are difficult to see among overlapping points) and the barplot in 

Figure 4d (that binarizes sites into m6A changed or not changed based on an arbitrary 

threshold), could the authors should a histogram or density plot to show the distribution of m6A 

probability changes for the three categories of SNV? These distributions do not appear different 

in Figure 4a, but the claims surrounding Figure 4d would suggest that they are. 

 

As we showed in Figure 4b, only a small population of SNVs cause the change of m6A 

deposition (|ΔProbability| > 0.1). The current Figure 4a is to show that some SNVs (though only 

a small proportion) could cause the evident m6A deposition changes. We did the histogram plot 

to show the distribution of m6A probability changes for the three categories of SNVs (Response 

Figure 2), the difference among the three groups cannot be seen as the dominant proportion 



of SNVs do not affect m6A deposition. Thus, we would appreciate that we could stay with our 

current Figure 4a plot. At the same time, to help reader understands the plot better, we added 

one sentence in the manuscript: though a large proportion of SNVs don’t affect m6A deposition, 

some do have evident effects on m6A deposition (Fig. 4a).   

 
Response Figure 2. Histogram of the distribution of m6A probability changes for VUS, Benign, 

and Patho SNVs. 

 

Reviewer #2 (Remarks to the Author): 

 

Glad to confirm that all my comments have been properly addressed. I am happy to recommend 

the acceptance of this manuscript at NC. 

 

We are thankful to Reviewer #2 for the recommendation of this manuscript for publication. 

 

Reviewer #3 (Remarks to the Author): 

 

This reviewer's concerns have been satisfied. I agree that several points raised by reviewers 

would benefit from detailed analyses in future publications. As such, the manuscript in its 

current form is a strong and important piece of work and will greatly contribute to our 

understanding of the details underlying m6A modification. 

 

We are thankful to Reviewer #3 for the encouraging statement for our manuscript acceptance. 



REVIEWERS' COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have sufficiently addressed my comments. 


